Katzen

INTERNATIONAL, INC.

Technology & Engineering

Cincinnati, Ohio USA

Philip W. Madson President

FUEL ETHANOL FEEDSTOCK CHALLENGES WHEAT/BARLEY/CORN

MORE THAN 6,000 ETHANOL PLANTS WORLDWIDE

SOURCE: DR. JOHN MURTAGH

ETHANOL PRODUCTION

(BILLIONS OF GALLONS)

SOURCE: F.O. LICHT

CONVENTIONAL ETHANOL PROCESS OPTIONS

WDG

	"New Generation" Plant	Reeve Agri-Energy
n PROTEIN	31	41
n TDN	84	86
n CRUDE FIBER	8 6	8.5
n GLUCOSE	0.65	ND
n SUCROSE	0.55	ND
n LACTIC ACID	1.2	0.3
n GLYCEROL	4.8	1.1
n ASH	6	2.4

(% - Dry Basis)

KATZEN EXPERIENCE WITH WHEAT *

- n MIDWEST GRAIN
- n REEVE
- n MOHAWK
- n MANILDRA
- n POUND-MAKER
- n API / PERMOLEX
- n BIOETANOL GALICIA
- n TARKIM

- KANSAS
- KANSAS
- MANITOBA
- IOWA, AUSTRALIA
- SASKATCHEWAN
- ALBERTA
- SPAIN
- TURKEY
- * (or WHEAT STARCH)

KATZEN EXPERIENCE WITH BARLEY

- n COLORADO AG
 (Barley and Potatoes)
- n MOHAWK
- n POUND-MAKER
- n BIOETANOL GALICIA

- COLORADO
- MANITOBA
- SASKATCHEWAN
- SPAIN

TECHNICAL DEVELOPMENTS

in the Production of Ethanol

YIELD

ETHANOL YIELD FROM CORN

(UNDENATURED)

	Gal./bu.	L./Tonne
1970's	2.5	370
1980's	2.65	390
1990's	2.75+	410

NOTE: 2.8 GALLONS PER BUSHEL (415 LITERS PER TONNE)
DEMONSTRATED

WHEAT AND BARLEY EXPERIENCE YIELDS PROPORTIONAL TO STARCH CONTENT

SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

U. S. PATENT # 4,224,410 1980

BEST FOR DRY MILLED GRAIN

FERMENTATION TECHNOLOGY U.S.A.

n Total - 81 Plants

- Wet Mills 10
 - * Cascade 9
 - * SSF 1
- Dry Mills (or equal) 71
 - * Cascade 9
 - * SSF 62

ENERGY

DISTILLATION ENERGY CONSUMPTION

TWO-LEVEL ENERGY CASCADE

MOLECULAR SIEVE DEHYDRATION

U VAPOR PHASE ADSORPTION

U NO ENTRAINER

u LOW ENERGY

DISTILLATION / DEHYDRATION TECHNOLOGY

Ţ	Y	P	E

DEHYDRATION TECHNOLOGY

ENERGY (BTU / Gal)

1970's STANDALONE

AZEOTROPIC

34,000

1980's INTEGRATED

AZEOTROPIC

17,000

14,000

COMPLEX

1990's FULLY INTEGRATED

MOLECULAR

SIEVE

"USER FRIENDLY"

2000's

ADDITIONAL

INTEGRATION

TOTAL ENERGY BALANCE CORN IN USA

n 67% More energy inFuel Ethanol thanrequired for production

n 1.67 to 1 Energy ratio

SOURCE: USDA

ALTERNATIVE ENERGY PROJECTS

ABENGOA

MANURE DIGESTION FOR BOILER FUEL

FEEDSTOCK ISSUES

EXAMPLE 20 MM GPY PLANT

FEEDSTOCK Ton/Yr

DDGS Ton/Yr

PRO-FAT % BD

WHEAT

210,000 (+8%) 70,000 (+26%)

34 - 40

BARLEY

234,000 (+21%) 98,000 (+77%)

28 - 34

CORN (base)

194,000

55,500

39 - 43

ENZYMES REQUIRED

CORN 3

WHEAT > 4 *
BARLEY

* Added beta-glucanase, xylanase (+1 to 2 cents per gallon)

WHEAT vs. CORN PLANT

INVESTMENT

+ 5 - 10 %

OPERATING COST

+ 2 - 3 CENTS PER GALLON

DDGS < QUANTITY QUALITY

+ 25 - 30 %

LOWER PRO-FAT

- WHEAT PLANT WORKS WITH CORN BUT NOT WITH BARLEY

BARLEY VS. CORN PLANT

INVESTMENT

+ 20 - 30 %

OPERATING COST

+ 4 - 6 CENTS PER GALLON

DDGS < QUANTITY QUALITY

+ 70 - 80 %

VERY LOW PRO-FAT and PALATABILITY

- BARLEY PLANT WORKS VERY WELL WITH WHEAT OR CORN

CELLULOSE as FEEDSTOCK

What is the most abundant organic molecule on earth?

Cellulose!

When will the "FIRST"

Cellulose — to — Ethanol Plant be built ???

CELLULOSE - TO - ETHANOL

- 1898 Germany 50 Gallons/Ton
- WWI USA 2 Plants
- 1932 Germany Scholler Process
- WWII USA KATZEN Plant
- 1952 Germany Improved Process

Russia

Japan

- (Operating – 2004)

- 1985 World
- Technology Understood Uneconomic
- 2005 World
- Near Term

MILD ACIDY ENZYME SYSTEM

FLOW DIAGRAM "MILD ACID HYDROLYSIS"

FLOW DIAGRAM "C5 FERMENTATION"

FLOW DIAGRAM "C6 FERMENTATION (SSF)"

FLOW DIAGRAM "STILLAGE PROCESSING"

GASIFICATION TECHNOLOGIES

Power and Ethanol from Biomass

BIOETHANOL

SUGAR ---> STARCH ---> CELLULOSE

"ALCOHOLISM" IS A DISEASE "VALUE - ADDED PROCESSING" IS A BUSINESS

WE ARE NOT HERE TO MAKE ALCOHOL.
WE ARE HERE TO MAKE MORE INCOME
FOR FARMERS - BETWEEN THE CROP
AND THE COW MANURE.

WITH PROPER POLICIES MONTANA WILL HAVE...

BIOREFINERIES

"PROCESSING THE SWEETEST CRUDE IN THE WORLD"

INTERNATIONAL, INC.

Technology & Engineering

Cincinnati, Ohio USA